课程培训
MATLAB与机器学习基础培训

课程大纲

第一课:MATLAB入门基础
1、  简单介绍MATLAB的安装、版本历史与编程环境
2、  MATLAB基础操作(包括矩阵操作、逻辑与流程控制、函数与脚本文件、基本绘图等)
3、  文件导入(mat、txt、xls、csv等格式)
第二课:MATLAB进阶与提高
1、  MATLAB编程习惯与风格
2、  MATLAB调试技巧
3、  向量化编程与内存优化
4、  图形对象和句柄
第三课:BP神经网络
1、  BP神经网络的基本原理
2、  BP神经网络的MATLAB实现
3、  案例实践
4、  BP神经网络参数的优化
第四课:RBF、GRNN和PNN神经网络
1、  RBF神经网络的基本原理
2、  GRNN神经网络的基本原理
3、  PNN神经网络的基本原理
4、  案例实践
第五课:竞争神经网络与SOM神经网络
1、  竞争神经网络的基本原理
2、  自组织特征映射(SOM)神经网络的基本原理
3、  案例实践
第六课:支持向量机(Support Vector Machine, SVM)
1、  SVM分类的基本原理
2、  SVM回归拟合的基本原理
3、  SVM的常见训练算法(分块、SMO、增量学习等)
4、  案例实践
第七课:极限学习机(Extreme Learning Machine, ELM)
1、  ELM的基本原理
2、  ELM与BP神经网络的区别与联系
3、  案例实践
第八课:决策树与随机森林
1、  决策树的基本原理
2、  随机森林的基本原理
3、  案例实践
第九课:遗传算法(Genetic Algorithm, GA)
1、  遗传算法的基本原理
2、  常见遗传算法工具箱介绍
3、  案例实践
第十课:粒子群优化(Particle Swarm Optimization, PSO)算法
1、  粒子群优化算法的基本原理
2、  案例实践
第十一课:蚁群算法(Ant Colony Algorithm, ACA)
1、  粒子群优化算法的基本原理
2、  案例实践
第十二课:模拟退火算法(Simulated Annealing, SA)
1、  模拟退火算法的基本原理
2、  案例实践
第十三课:降维与特征选择
1、  主成分分析的基本原理
2、  偏最小二乘的基本原理
3、  常见的特征选择方法(优化搜索、Filter和Wrapper等)


 




如果您想学习本课程,请预约报名
如果没找到合适的课程或有特殊培训需求,请订制培训
培训特点:
针对实际需求,顾问式咨询,互动式授课,案例教学,小班授课,实际项目演示
培训讲师:
中国科学院软件研究所,计算研究所高级研究人员
IBM,oracle,微软,vmware等大型公司高级工程师,项目经理,技术支持专家
中科信软培训中心,资深讲师
大多名牌大学,硕士以上学历,相关技术专业,理论素养丰富
多年实际项目经历,大型项目实战案例,热情,乐于技术分享。
针对客户实际需求,案例教学,互动式沟通,学有所获
报名表下载
联系我们 更多>>

咨询电话010-62883247

                010-62884854

咨询邮箱:soft@info-soft.cn  

 

微信号.jpg

  微信咨询

随时听讲课

聚焦技术实践

订制培训 更多>>